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ABSTRACT 

We explore the pulsar slot gap (SG) electrodynamics up to very high altitudes, 
where for most relatively rapidly rotating pulsars both the standard small-angle 
approximation and the assumption that the magnetic field lines are ideal stream 
lines break down. We address the importance of the electrodynamic conditions at 
the SG boundaries and the occurrence of a steady-state drift of charged particles 
across the SG field lines at very high altitudes. These boundary conditions and 
the cross-field particle motion determine the asymptotic behavior of the scalar 
potential at all radii from the polar cap (PC) to near the light cylinder. As a 
result, we demonstrate that the steady-state accelerating electric field, Ell, must 
approach a small and constant value at high altitude above the PC. This Ell is 
capable of maintaining electrons moving with high Lorentz factors (- a few x 
lo7) and emitting curvature y-ray photons up to nearly the light cylinder. By 
numerical simulations, we show that primary electrons accelerating from the PC 
surface to high altitude in the SG along the outer edge of the open field region 
will form caustic emission patterns on the trailing dipole field lines. Acceleration 
and emission in such an extended SG may form the physical basis of a model 
that  can successfully reproduce some pulsar high-energy light curves. 

Subject headings: acceleration of particles - gamma rays: theory - pulsars: 
general - radiation mechanisms: nonthermal - stars: neutron 

1. INTRODUCTION 

There is no doubt that pulsars are accelerating particles up to relativistic energies in their 
magnetospheres, and that these particles are primarily responsible for the pulsar radio- to 
high-energy non-thermal emission. It is also believed that the energetics of this acceleration, 
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as well a s  the main physical processes involved in production of high-energy photons, are more 
or less understood. However, the ambiguity in interpretation of pulsar timing observations 
in terms of emission site mapping in a pulsar magnetosphere makes it difficult t o  answer the 
basic question of where the pulsar high-energy emission originates. In their recent attempt to 
explain the observed high-energy light curves of pulsars, Dyks & Rudak (2003) concentrated 
on a purely geometrical model by postulating that the emission is produced in a relatively 
narrow region along the last open magnetic field lines of a pulsar magnetosphere. The 
interesting result of their study is the occurrence of caustic emission zones (Morini 1983), 
i.e. the phase shifts of radiation emitted at radii between N 0.1 - 0.7 times the light cylinder 
radius, parallel to field lines on the trailing edge of the polar cap (PC), are cancelled by 
phase shifts due to relativistic effects of aberration and time-of-flight. Radiation emitted 
over a large range of altitudes thus arrives in phase, forming two narrow peaks in the light 
curves, very similar to  those of known y-ray pulsars (e.g. Thompson 2001). 

In our previous paper (Muslimov & Harding 2003 [MH03]) we began discussing the 
regime of acceleration of particles and production of high-energy emission within the pulsar 
slot gap (SG), a narrow region on the boundary of the open field lines, where the electric field 
drops t o  zero. The SG is a pair-free region of slower acceleration, in which the parallel electric 
field is unscreened. Pair cascades develop along the inner edge of the SG at several stellar 
radii above the NS surface. Even though the SG regime in pulsars was originally introduced 
in the electrodynamic model of Arons & Scharlemann (1979), it was not considered a viable 
high-energy emission region (see e.g. Arons 1996). The revised version of the SG regime 
proposed by MHO3 incorporates the effect of relativistic frame dragging (Muslimov & Tsygan 
1992 [MT92]) and, more importantly, the effect of SG boundaries on the strength of the 
accelerating electric field within the SG. MHO3 demonstrated that the primary electrons 
tend to  accelerate up to higher altitudes before pair production begins, and pair cascades 
continue along the inner boundary of the SG until the magnetic field becomes too low. The 
resulting radiation from the pair cascades forms a wide, hollow cone of high-energy radiation 
due to the flaring of field lines. Adhering to the small-angle approximation, MHO3 restricted 
their study of the SG regime to altitudes less than four-five stellar radii. However, since the 
parallel electric field in the SG is not screened on field lines close to the open-field boundary, 
acceleration may continue to  much higher altitudes. Particle acceleration and radiation in 
such an extended SG may therefore provide a physical basis for the two-pole caustic model 
of Dyks & Rudak (2003). 

Formation of a SG requires the production of enough pair multiplicity to  screen the 
parallel electric field above the pair formation front. We have found from our previous studies 
(Harding & Muslimov 2001 [HMOl], 2002 [HM02]) that the youngest and most energetic 
pulsars can produce pairs from curvature radiation (CR) of primary electrons, which are 



- 3 -  

numerous enough to screen the electric field. Older, less energetic pulsars, those below 
the C R  pair death line, can produce only pairs from inverse Compton radiation of primary 
electrons scattering thermal X-rays from the NS surface. The inverse Compton pairs are not 
numerous enough to completely screen the parallel electric field. A necessary condition for 
formation’ of a SG is thus the ability to produce pairs from CR, and the expression for the 
CR death line (given by Eqn [52] of HM02) defines the boundary in the P-P diagram of 
pulsars capable of having SGs. Such pulsars include the Crab, Vela, Geminga and most of 
the y-ray pulsars detected by EGRET, but not the majority of millisecond pulsars. 

The extension of the regime of SG acceleration to much higher altitudes is the main 
subject of the present paper. In the Sections below we outline our approach to  constructing 
an appropriate steady-state physical solution that can be used up to very high altitudes in 
the SG. We also discuss the immediate consequences of our proposed extended SG solution: 
acceleration of particles (electrons, positrons) and high-energy emission up to nearly light- 
cylinder radius, and the possibility of occurrence of high-altitude caustic emission on trailing 
field lines. 

The paper is organized as follows. In 52 we discuss the electrodynamics within the SG 
regions of pulsars. We address the physical constraints on the scalar potential (52.1) and 
equipotentiality of SG boundaries and derivation of effective Poisson’s equation (52.2) in 
the outermost section of SG. In 53 we present the electrodynamic solution within the SG at 
very high altitudes. In 53.1 we illustrate the possibility of extended acceleration within SG 
in the regime where the acceleration is balanced by the curvature-radiation reaction. Our 
numerical calculations are discussed in $3.2. Finally, in 54 we discuss our main results and 
draw our principal conclusions. 

2. Steady State SG Electrodynamics 

In the frame of reference rigidly corotating with a neutron star (NS), where the magnetic 
field is stationary (and having dipolar geometry), the general relativistic Maxwell’s equations 
yield (see MT92) 

1 1 
1 1 E - - ( w - u ) x B = - - V @ ,  

QC 0 

where E and B are the electric and magnetic fields defined in Zero-Angular-Momentum- 
Observer (ZAMO) frame of reference (see Macdonald & Thorne 1982), u is the rotational 
velocity, and w is the differential velocity of rotation of inertial frame of reference, is the 
scalar potential, and the so-called geneneral-relativistic ‘lapse function’, a, is defined below, 
right after expression (18). Taking the divergence of eq. (1) and making use of Maxwell 
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b 

equation 

we get the Poisson’s equation for the scalar potential 

V - E = 4 ~ p ,  

where 

(4) 

is the general relativistic expression for the Goldreich-Julian (GJ) charge density (cf. Gol- 
dreich & Julian, 1969), and p is the actual charge density of electrons determined by their 
relativistic flow along the magnetic field lines and which is fixed by the condition Ell = 0 at 
the stellar surface (see MT92 for details). Thus our electrodynamic description of charges 
streaming along the open field lines will imply the space-charge-limited flow approximation 
(at least near the stellar surface, within the radial distance of less than a few stellar radii). 

Note that the 1.h.s. of eq. (1) can be treated as the effective electric field in the frame 
of reference rigidly corotating with the NS, 

1 
E ’ = E - - ( w - u ) x B .  

CYC 
( 5 )  

The condition of absence of any electric field in the regions of the magnetosphere with closed 
field lines rigidly corotating with the NS, E’ = 0, necessarily implies that these regions should 
be filled with charges of density p = pGJ (as a trivial solution of eq. [3]). 

Our previously derived solutions (see MT92, Muslimov & Harding 1997 [MH97]) for the 
case p 5 pGJ were limited by a small-angle approximation and therefore cannot be justifiably 
used beyond the radial distances of about 3-4 stellar radii above the PC surface (for a 
typical pulsar spin period). Recently, MHO3 discussed the SG solution which is also formally 
limited to a small-angle approximation. This means that, because of the curving of the SG 
toward the magnetic equator, the solution derived in MHO3 cannot be used for high altitudes, 
typically exceeding a few (or several, at most) stellar radii above the surface. Here we discuss 
the regime of steady-state acceleration within the SG extending up to  very high altitudes, 
nearly approaching the light-cylinder. By addressing the basic physical conditions that are 
required for the occurrence of this regime, we observe that the standard concept of GJ 
charge density becomes inapplicable in the outermost section of the SG, where the effective 
GJ charge density gets significantly constrained by the requirement of equipotentiality of SG 
boundaries and by the effect of cross-field motion of charges. 

We shall explore the SG solution in the outermost part of NS magnetosphere (but still 
within the light-cylinder) satisfying the same boundary conditions as those used in all our 
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previous studies: equipotentiality of the SG surfaces, and zero-electric field condition at  the 
PC surface. We propose the following ansatz for constructing the general solution extending 
from the innermost section up through the outermost section of the SG. By considering the 
fundamental property (see Section 2.1 below) of the scalar potential @ at large (up to the 
light-cylinder radius) distances found by Mestel et al. (1985) together with the abovemen- 
tioned boundary conditions (equipotentiality of SG surfaces and zero-electric field condition 
at the PC surface), we can unambiguosly constrain and determine the outermost solution 
for the potential @. Then, by matching the outermost solution with the known innermost 
solution near the NS surface (presented in MH03) we can construct the approximate general 
solution applicable to both the innermost and outermost sections of the SG. 

Note that any physically meaningful electrodynamic solution in the outermost part of 
the magnetosphere should take into account the effect of particle drift across the field lines 
or deviating of particle trajectories from magnetic field lines. This effect should unavoid- 
ably constrain the scalar potential a, simply because in this region the field lines cannot be 
treated as characteristics or as stream lines for the flux of relativistically moving electrons. 
In a steady-state situation, it is reasonable to  expect that  the scalar potential @ is a mono- 
tonically increasing (or decreasing, as in the case of acceleration of positive charges) and then 
saturating function of radial distance so that the outermost solution gradually matches the 
innermost one. In this study we demonstrate that in a steady-state situation, the constraint 
on @ in the outermost region of the NS magnetosphere (but well within the light cylinder) 
along with the condition of equipotentiality of the SG surface allows us to derive an appro- 
priate electrostatic solution. This solution implies initial (in the innermost section of a SG) 
boosting of electron acceleration over characteristic lenghtscale of - 1 - 2 stellar radii and 
subsequent extremely slow post-boost acceleration over lengthscale - light-cylinder radius. 

2.1. Constraint on Potential  @ in the Outermost Section of SG 

The equation of motion of an electron of mass m and charge -e can be written as (see 
eq. [2.24] in Mestel et al. 1985) 

e 
-- m (E + C x B) = v * V(yv) = V(yc2) - v x (V x (yv)), 

where y = (1 - u2/c2) - l i2 ,  v is the electron velocity. In Mestel et a1.k notations, 

E = -V4, (7) 

and mc 
- x B - -V x (yv)) = V$*, " (  C e 
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so that equation of motion, (6), translates into (see eq. [2.26] in Mestel et al. 1985) 

where S is the stream function. 

Note that the scalar potential @ defined by eq. (1) is a general-relativistic counterpart 
of the so-called 'non-corotational' potential $J (see e.g. eq. [2.5] in Mestel et al. 1985) 
introduced by Endean (1974), Mestel (1973), and Westfold (1981) and which can be defined 
via equation 

O x r  Oll,=V$-- x B. 
C 

For relatively low altitudes @ M r(mc2/e). For high altitudes (but still within the light- 
cylinder), as was first demonstrated by Mestel et al. (1985), the change in the angular 
momentum ym'2r2 (where F is the radial cylindrical polar coordinate) of a streaming particle 
occurs only through the toroidal component of the magnetic force, requiring departure from 
strict flow along the field lines. The combination of energy and angular momentum integrals 
gives (in cylindrical polar coordinates in the axisymmetric case) 

where r(S) is some function which is constant on stream lines and which is set a t  the stellar 
surface. Here the term o( R2 is the so-called 'centrifugal-slingshot' term (see Mestel et al. 
1985) arising from the flow of electrons across the field lines. 

It is important to point out that within the domain of the SG the actual deviation from 
strict flow along (poloidal) B is of order 

6 z ymc2/(eBAZs,), (12) 

where Al,, - 8oRA(sGfi is the characteristic latitudinal SG thickness at dimensionless 
radial distance 7. (7 = r / R ) ;  00 is the PC half-angle, 80 = [ R R / f ( l ) ~ l ' / ~ ;  and A&., is 
the latitudinal SG thickness in units of ((( = 8/80 is the dimensionless colatitude of a PC 
field; see Section 3 and also MHO3 for details). Thus, the characteristic dimensionless radial 
distance at which the magnitude of the deviation from strict flow along (poloidal) B reaches 
6, can be estimated as 

where qC = c/RR is the dimensionless radius of the light-cylinder; R = 27r/P is the angular 
velocity of NS rotation; R and P are the NS radius and spin period, respectively; B12 = 
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BO/1Ol2 G, BO is the surface value of NS magnetic field strength; R6 = R/106 cm, Po.l = 
P/O.l s, and 7 7  = 7/107. 

For the parameters of the Crab pulsar (here we adopt the values: B12 = 8, & = 1.6, and 
Peel = 0.33) and assuming 6 N 0.05 - 0.1, from formula (13) we get 

q* = (0.3 - 0.4) qic (A&;) 2’5 , (14) 

so that for the estimated value of AtsG N 0.05 (see MH03) and for 77 N 3 condition (13) is 
satisfied at q* N (0.5 - 0.7) qlc. 

Formula (14) means that within the SG the effect of transfield motion becomes important 
already at q 5 q C  (for the Crab-like pulsars) and should be taken into account. This is 
significantly different from Mestel et al.’s model where a similar situation would occur well 
beyond the light cylinder (and where AZ,, in formula [12] should be replaced by the light 
cylinder radius, R1, = c/n), because the lengthscale was the entire open field region rather 
than the narrow SG. 

The fundamental consequence of eq. (11) is that in the region where the centrifugal- 
slingshot effect becomes important ( e g  at q 5 q C  for the Crab-like pulsars) the electrons 
crossing the field lines begin picking up energy from the corotational part of the potential 
(from potential 4, in Mestel et al.,s notation), so that in the regime of mostly transverse 
flow the change in potential (change in I’(S)) across the field lines caused by rotation tends 
to balance the change in the corotational part of the potential. Suppose that the electrons 
are flowing with relativistic velocities along the magnetic field lines and entering the region 
where they are getting ‘decoupled’ from the magnetic field lines. Apparently, the solution 
of MHO3 for p and therefore for @ will not be warranted in this region and especially in 
the region with predominantly transfield flow. However, we may justifiably assume that at 
the onset of the transfield flow regime, where the relativistic flow of electrons is still mostly 
along the magnetic field lines, the condition (see e.g. Mestel 1995, 1999) 

f l x r  
E’i M El + - x B z 0 ,  

C 

‘turns on’, with Ell << 31 (for most acceleration scenarios we discuss in this paper Ell is 
balanced by the CR reaction force). Further out in the magnetosphere the condition (15) 
may transform into the perfect MHD condition (see also Contopoulos, Kazanas & Fendt, 
1999), E + (v/c) x B = 0, which is a good approximation as long as Ell << E l .  

We suggest that the condition (15) together with the equipotentiality of the SG surfaces 
may in fact determine the behavior of potential <P through the outermost section of the SG. 



- 8 -  , 

It is important that at large radial distances E'I as given by eq. ( 5 )  is dominated by the term 
(s2 x r/c) x B, which tends to produce significant electric potential drop across the SG, and 
as a result, would induce enormous surface charge on the SG boundaries. Also, it must be 
pointed out, that this term would tend to induce a strong component of Ell with the polarity 
that may change with altitude and become opposite to that of the main component of Ell, 
produced by a small imbalance between the GJ and actual charge densities in the innermost 
region, at altitudes within N 1 - 2 stellar radii. The occurrence of a strong component of 
Ell with reversed polarity would unavoidably disrupt the continuous flow of electrons along 
the field lines and result in an essentially non-stationary regime of particle flow. However, 
in the steady-state situation we consider in this paper, the occurrence of cross-field motion 
of electrons would effectively screen out the excessive GJ space charge and short out the SG 
boundaries, thus maintaining them as equipotential. The latter means that condition (15) 
would be roughly satisfied in and beyond this region. Before we discuss how condition (15) 
can be explicitly incorporated into our electrostatic solution, let us discuss the consistency 
of this condition with the assumption of equipotentiality of SG boundaries all the way from 
the PC surface up to the very high altitudes (say, up to N 0.1 - 0.5 of the light-cylinder 
radius). 

2.2. Equipotentiality of SG Boundaries and Effective Poisson's Equation in 
the Outermost Section of SG 

Let us consider the cross-sectional area of a magnetic flux tube (of dipole field) emanat- 
ing from the PC at radial distance q (= r / R )  

where f ( q )  is the general-relativistic correction factor, defined as (see e.g. MT92) 

where q = r / R  is the dimensionless radial coordinate, E = rg /R ,  and rg is the gravitational 
radius of the NS. One can use approximate formula f ( q )  1+0.75z+0.6z2 (where z = c / q ) .  
For a canonical NS of 1.4 solar mass and 10 km radius ( E  = 0.4) f(1) M 1.4. 

In this paper, as in our previous studies, we use the magnetic spherical polar coordinates 
(q,  8, &). We also denote by x the pulsar obliquity (angle between the NS rotation axis 
and magnetic moment). We will refer a 'normal polarity' pulsar as one having 0" 5 x < 90" 
(north magnetic pole near north astrographic pole: s2 m > 0, where m is the NS magnetic 



dipole moment), and a 'reversed polarity' pulsar as one having 90" < x 5 180" (north 
magnetic pole near south astrographic pole: - m < 0) .  

We shall now introduce the flux of charges streaming with relativistic velocity through S(q), 

where p is the local charge density, and o = (1 - c/q) ' I2  is the lapse function. 

In a steady-state regime, well within the light cylinder, the flux F should be constant along 
the individual magnetic flux tube as a consequence of charge continuity equation which 
implies that a p  oc B oc q-3. In this case F is a function of [ only (and not q).  [The variable 
< is equivalent to  the Stokes stream function S (see eq. [9]) used by Mestel et al.] However, 
at very high altitudes, for any stream line within the SG we can write that 

where /3 = ,/- is a factor that takes into account the change in the geometry of 
the flux tube as we move from the magnetic pole to the equator. 

The explicit expressions (see e.g. MH97, for the derivation of these expressions) for the 
GJ charge density, pGJ, and actual charge density, p, may be written as 

and 

respectively (see also MT92 for the exact expression for p valid for arbitrary small altitudes 
and which is consistent with the radial profiles of potential @ and Ell). Here po = ilBo/2.1rc, 
and I E 3  

a0 = 1, a1 = -< - - ~ ( q )  sin2 e, (22) 
r l 2  
3 
2 

bl = -H(rl)sinOcosO, bo = 0,  

Here K is the general-relativistic parameter characterizing the magnitude of the frame- 
dragging effect near the stellar surface measured in stellar rotation velocity, 0, and p is 
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defined right after eq. (19). These expressions are formally derived for arbitrarily large 
distances but still within the light cylinder. Well within the light cylinder, at q << qlc 
(qc - eo2), and in a small-angle approximation, 

which correspond to  the expressions for p and pGJ we used in our previous papers for the 
situations where a small-angle approximation was in fact more than satisfactory. One can also 
use the approximate expression, H ( q )  M 1 - 0.252 - 0 . 1 6 ~ ~  - O . ~ ( I C / E  )z (1 - 0.252 - 0.21x2), 
where 2 = ~ / q .  For a canonical NS [see also eq. (17)] H(1) M 0.8. 

3 3  

Now, the flux of effective GJ charges can be written as a sum of constant and varying 
with altitude components, 

F G J  = F G J , ,  + F G J , i ,  

FGJ,i = Fo(ai cos x + bi sin x cos +pc), 

(26) 

(27) 
where 

i = 0, 1 , 
and Fo = -pOcS(l) is a constant factor depending on pulsar bulk parameters. Note that, 
according to  the GJ reasoning (Goldreich & Julian, 1969), the corotating region of the pulsar 
magnetosphere with closed magnetic field lines should be filled with charges of local density 
PGJ . This condition guarantees that any electric field which could be possibly generated 
in this region should be completely screened out. We do not intend to  speculate on the 
dynamics of formation of the non-vacuum pulsar magnetosphere (see e.g. Krause-Polstorff 
& Michel, 1985; Arons & Spitkovsky, 2002), but we assume that the filling in of the closed 
field lines of the initially charge-starved magnetosphere with charges is most likely to occur 
along the field lines. Even more, since F,,,, is a function of q,  one may expect that this 
process develops in a non-stationary manner. 

Let us now consider the flux AF, corresponding to the charge imbalance between the 
GJ and actual local space-charge density, Ap = pcJ - p, 

AF = F G j  - F w a d ( r ~ ) ( ~ G j  - P)  M AF*(q, t )  - P(q)AF*(1, t) ,  

AF* (7, t )  = F o b 1  (7, t)  cos x + bib, t )  sin x cos $pc] 

(28) 

(29) 
where 

Using the explicit expressions for a1 and bl (see eqs [22], [23]) we can write 
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where p is defined right after eq. (19). Here we should reiterate that the formal usage 
of a general expression for Ap = pGJ - p (= AF/acS[q]) to solve the Poisson’s equation 
for arbitrarily large altitudes leads to  the inconsistent and even erroneous result, mostly 
because of the physical reasons discussed in the end of previous Section. Namely, such 
a solution would imply the building up of the effective flux, AF, exceeding the GJ  flux 
FGJ(q = l), fixed at the stellar surface, and charge reversal of the accelerating electric field 
at high altitudes. Also, we would like briefly comment on the space-charge-limited flow 
approximation at high altitudes in pulsars. Generally, the space-charge limitation occurs 
when the ejected charges reduce the accelerating potential drop boosting the initial particle 
energy. In pulsars, the flux of electrons ejected from the PC surface is limited by the value 
of GJ space charge at the bottom of the PC. In this case F remains constant along the 
magnetic stream lines and is determined by FGJ at q = 1. Above the PC surface the space 
charge of ejected electrons reduces the “vacuum” potential drop by limiting it to the value 
determined by a small imbalance between the GJ  charge density and actual charge density 
of electrons. This approximation is perfectly valid within a few stellar radii above the PC 
surface of most pulsars, when lAF(q)I 5 IFGJ (1)l. However, at high enough altitudes, where 
lAF(q) I > IF,, (1)l the situation is akin t o  the acceleration of test particles in a vacuum-like 
potential drop. Let us examine this in more detail for the SG by using the above expressions 
for AF and then formulate the derivation of an approximate but physically meaningful 
solution. 

For low altitudes, 7 w 1 + z ( z  << l), we can write 

1 
4 

6 cosx + -H(l)OO sin x cos 4pc 

and 

(32) 1 3 
2 

F,, F ,  [ (1 - Lc) cos x + -H(i)eo sin x cos 4pc , 

so that lAFl << IFGJ/, assuming that FGJ # 0. This means that at low altitudes the imbalance 
between F and F,, (the flux of fictitious charges) that gives rise to the accelerating electric 
field in that region is much smaller than the local GJ flux, and therefore there will be no 
disruption of the steady-state regime of particle flow within the SG. 

At large distances, 1 << q << qC, 

where lFG,,l(q >> 1)1 >> IFGJ(z = q - 1 << 1)1, and FGJ(z << 1) is a function of [ only (i.e. is 
nearly a constant along the field lines). 
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Thus, for low altitudes, up to  approximately one-two stellar radii above the PC surface, 

Expressions (34), (35) imply that the SG boundaries can easily acquire the necessary surface 
charge by means of redistribution of space charges along the field lines in the vicinity of the 
SG boundaries, thus enabling the fulfillment of both the equipotentiality of SG boundaries 
and continuity of E l  across them. Note that, the component E l  and therefore the magnitude 
of induced surface charge is mostly determined by FGJ,l (or by P ~ ~ , ~ ) .  Since in this region 

I 5 IFGJ,o 1, the required surface charge can be easily built up by establishing a weak 
current along the boundary field lines, without violating the GJ condition that in a steady- 
state regime the flux of charges from (to) the stellar surface should be limited by FGJ,o. We 
must also note that the presence of a weak current along the SG boundary determined by 
flux FGJ,l is perfectly compatible with equipotentiality of the boundary. For example, this 
can be achieved by establishing a slightly non-homogeneous distribution of charges in a tiny 
skin layer along the boundary, at @ = 0. 

As we move up to higher altitudes along the SG boundaries where 

and where E’I is mostly determined by the term N (52 x r/c) x B, the situation changes 
dramatically. In this case the equipotentiality of the SG boundaries becomes fundamentally 
incompatible with a steady state regime. In other words, it is very unlikely that the SG 
boundaries can be steadily maintained in dynamic equilibrium in the presence of a strong 
E’I component. Rather, it is this region where the centrifugal-slingshot effect makes the 
electrons/positrons ‘slip’ from the magnetic field lines, and therefore effectively prevents 
charges from building up the otherwise required surplus surface charge on SG boundaries. 
Thus, in a steady-state situation the SG boundaries can be maintained as equipotential, if 
the approximate condition E’* = 0 (or its classical counterpart [15], as it will be referred 
to  in the rest of the paper) is achieved throughout the SG outermost section. This means 
that in the outermost section of SG the value of AF(7, () (see [30]) cannot grow (because of 
cross-field motion of charges at very high altitudes that effectively destroys the excessive G J  
space charge in this region), and it is likely to  nearly saturate at 7 !z qc remaining constant 
along the stream lines. In this case the scalar potential @ is described by the following 
Poisson’s equation 


